Synthesis and Structure of the Perovskite-Type Phase Ba₄CuYW₂O₁₂

Ingrid Bryntse

Department of Inorganic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden

Bryntse, I., 1990. Synthesis and Structure of the Perovskite-Type Phase $Ba_4CuYW_2O_{12}$. – Acta Chem. Scand. 44: 855–856.

Since the discovery of high- T_c superconducting phases in the BaO-CuO- Y_2O_3 system, substitutions in this system have been of interest. A substitution of tungsten for copper has recently been discussed.

We present here a cubic perovskite-type phase of the formula Ba₄CuYW₂O₁₂, with a cell parameter close to that reported for a supposedly superconducting phase, and a volume eight times the primitive perovskite unit.

Phase analysis. The starting chemicals, BaCO₃ (Merck, p.a.), CuO (Schering, p.a.), Y₂O₃ (Starck, finest) and WO₃ (Riedel de Haën, puriss), were ground together and pelletized. The pellets were placed in an alumina crucible, heated to 1000 °C for about 24 h and cooled outside the furnace. The products were brown powders, and no reaction with the crucible could be noticed.

The X-ray powder patterns were taken in a Guinier-Hägg focussing camera with Si as internal standard ($a_{\rm Si} = 5.430~88~\text{Å}$ at 25 °C), and the films were automatically scanned.³ Starting compositions corresponding to Ba₂Cu₂YWO_{8.5} gave clearly polyphasic samples.

However, when the composition was close to the ratio Ba:Cu:Y:W = 4:1:1:2 the Guinier film showed a cubic pattern with only one very weak extra line. The pattern was indexed on the basis of a face-centred cell with a = 8.3065 (6) Å (Table 1).

Part of this sample was ground in butanol and placed on a holey carbon film on top of a pure nickel grid. The crystal fragments were analyzed in a JEOL 2000FX transmission electron microscope equipped with a standard EDS detector at the 70° take-off position (LINK QX200). Selectedarea electron diffraction along the <100> zone axis was compatible with a cubic F-centred cell with $a \approx 8.3$ Å. Reflections hk0 with h + k = 4n were markedly stronger than the rest. The EDS analyses of a large number of thin fragments indicated that the weighted-in stoichiometry was preserved, and no impurities could be detected. All crystals analyzed gave roughly the same metal ratio.

A sample of the unreacted powder (26.73 mg) was heated in air in a Perkin Elmer thermogravimetry appara-

tus. The heating rate was $2 \,^{\circ}\text{C}$ min⁻¹ in the temperature range $500\text{--}1000\,^{\circ}\text{C}$. The measured loss of weight in this experiment was $12.9\,\%$. If the total reaction is assumed to be given by reaction (1), the loss of weight should be $12.7\,\%$. The small difference between this calculated value and the one measured could be explained by moisture or a slight volatilazation of WO_3 .

$$8BaCO_{3} + 2CuO + Y_{2}O_{3} + 4WO_{3} \rightarrow$$

$$2Ba_{4}CuYW_{2}O_{12} + 8CO_{2} + \frac{1}{2}O_{2}$$
(1)

Structure refinement. Since the composition was found to be close to that of an ideal perovskite, ABO_3 , we assumed barium to be in the A-position and the smaller atoms cop-

Table 1. Observed and calculated *d*-values for the Guinier–Hägg X-ray powder diffraction pattern of Ba₄CuYW₂O₁₂. The observed and calculated intensities are from a Rietveld refinement based on data obtained from a STOE powder diffractometer. $\lambda = 1.540\,598\,\text{Å}$.

h	k	1		d _{obs} /Å	d _{calc} /Å	lobs	I _{calc}
1	1	1		4.7976	4.7957	12.5	12.0
2	0	0		4.1518	4.1532	0.9	0.7
2	2	0		2.9360	2.9368	100.0	100.0
3	1	1		2.5038	2.5045	6.1	5.5
2	2	2		2.3973	2.3979	2.5	2.2
4	0	0		2.0768	2.0766	27.0	28.1
3	3	1		1.9054	1.9056	1.8	2.0
4	2	2		1.6958	1.6955	37.7	37.4
3 5	3	3	}	1.5993	1.5986	2.6	2.6
4	4	0	,	1.4688	1.4684	15.6	16.0
5	3	1		1.4045	1.4040	1.6	2.5
6	2	0		1.3137	1.3134	14.7	15.6
5	3	3		1.2669	1.2667	0.9	0.8
4	4	4		1.1989	1.1989	5.4	4.9
5 7	5 1	1	}	1.1626	1.1631	1.9	1.4
6	4	2	,	1.1099	1.1100	17.7	17.7

Table 2. Positional parameters of Ba₄CuYW₂O₁₂ and individual isotropic temperature factors, with estimated standard deviations in parentheses.

Atom	Position	x/a	y/b	z/c	B/Ų
W	4(a)	0	0	0	1.0(2)
Cu,Y	4(b)	1/2	1/2	1/2	2.8(3)
Ва	8(<i>c</i>)	1/4	1/4	1/4	0.4(1)
0	24(<i>e</i>)	0.232(3)	0	0	1.7(4)

per, yttrium and tungsten in the *B*-positions. *Fm3m* is then a possible space group if Cu and Y are statistically distributed in 4b and four W located in 4a (Table 2).

X-ray powder data for Rietveld refinement were collected on a STOE STADI/P powder diffractometer, using a rotating sample in a symmetric transmission mode. Step intensities in the 2θ -range 10– 120° were used in the refinement (step length $\Delta 2\theta = 0.02^{\circ}$).

Full-profile Rietveld refinement of the structure was carried out with the program DBW3.2S.⁴ The following parameters were refined: one positional parameter, five isotropic temperature factors, one zero-point parameter, one scale factor and three half-width parameters. It was noticed that the maximum value for the half-widths was rather large, 0.65° (2 θ). The refinement was terminated when all shifts in the parameters were less than 10% of the corresponding standard deviations. The final *R*-values, $R_p = 0.046$, $R_{wp} = 0.060$, $R_{Bragg} = 0.048$ and $R_F = 0.068$, were obtained for the positional parameter and temperature factors in Table 2. Observed and calculated intensities are listed in Table 1. The bond lengths are Cu(Y)–6O = 2.23(3) Å, W–6O = 1.93(3) Å and Ba–12O = 2.941(1) Å.

In separate refinement cycles the occupation factors were checked. However, no significant deviation from the assumed formula was seen.

This new phase in the Ba–Cu–Y–W–O system is a member of the perovskite family Ba_2MWO_6 (M=Mg, Zn, Ni, Ca) reported by Filipev et al.⁵ The refinement indicates that Cu and Y share the M-positions. It is probable that Cu(II) is reduced to Cu(I), as suggested by the brown colour of the phase and the thermogravimetry experiment. The relatively high temperature factors for Cu and Y indicate that the true positions of these atoms may deviate slightly from the average symmetrical sites. The sample was found to be a very poor electric conductor at room temperature.

Acknowledgements. The author acknowledges valuable discussions with Prof. L. Kihlborg and Dr. J. Grins. This study is part of a project that has received financial support from the Swedish Natural Science Research Council.

References

- Wu, M. K., Ashburn, J. R., Torng, C. J., Hor, P. H., Meng, R. L., Gao, L., Huang, Z. J., Wang, Y. Q. and Chu, C. W. *Phys. Rev. Lett.* 58 (1987) 908.
- Bokhimi, MRS Fall Meeting 1989, Boston, Mass. See also discussions in Superconductor Week 3 (No. 46) (1989) 3 and 4 (No. 3) (1990) 1, as well as High Tc Update 4 (Nos. 3–5) (1989) 1.
- Johansson, K. E., Palm, T. and Werner, P.-E. J. Phys. E 13 (1980) 1289.
- Wiles, D. B., Sakthivel, A. and Young, R. A. Program DBW 3.2S (1987).
- 5. Filipev, V. S., Shatalova, G. E. and Fesenko, E. G. Sov. Phys. Crystallogr. (Engl. Transl.) 19 (1974) 236.

Received March 28, 1990.